コンテンツにスキップ
JP|EN
  • 夏目光学とは
    • 企業理念
    • 夏目光学とは
    • 会社概要・沿革
      • 社長挨拶
      • 本社
      • テクノロジーセンター
      • 夏目光学の受賞歴
    • 海外向Webサイト
  • 適応分野
    • 半導体製造
    • レーザー加工
      • レーザー用非球面レンズ
    • X線・先端科学
    • 分析・医療
    • 光通信
    • 映像
    • センシング・自動車
    • 航空・宇宙
  • オプティクス
    • 光学素子
    • 光学設計
    • 光学ユニット
    • 品質保証
  • ヒカリの豆知識
    • ヒカリの豆知識
    • ヒカリの用語集
  • お知らせ
    • お知らせ
    • 展示会について
  • 採用案内
  • お問合せ
    • プライバシーポリシー
    • セキュリティーポリシー
  • 夏目光学とは
    • 企業理念
    • 夏目光学とは
    • 会社概要・沿革
      • 社長挨拶
      • 本社
      • テクノロジーセンター
      • 夏目光学の受賞歴
    • 海外向Webサイト
  • 適応分野
    • 半導体製造
    • レーザー加工
      • レーザー用非球面レンズ
    • X線・先端科学
    • 分析・医療
    • 光通信
    • 映像
    • センシング・自動車
    • 航空・宇宙
  • オプティクス
    • 光学素子
    • 光学設計
    • 光学ユニット
    • 品質保証
  • ヒカリの豆知識
    • ヒカリの豆知識
    • ヒカリの用語集
  • お知らせ
    • お知らせ
    • 展示会について
  • 採用案内
  • お問合せ
    • プライバシーポリシー
    • セキュリティーポリシー
JP|EN
  • 夏目光学とは
    • 企業理念
    • 夏目光学とは
    • 会社概要・沿革
      • 社長挨拶
      • 本社
      • テクノロジーセンター
      • 夏目光学の受賞歴
    • 海外向Webサイト
  • 適応分野
    • 半導体製造
    • レーザー加工
      • レーザー用非球面レンズ
    • X線・先端科学
    • 分析・医療
    • 光通信
    • 映像
    • センシング・自動車
    • 航空・宇宙
  • オプティクス
    • 光学素子
    • 光学設計
    • 光学ユニット
    • 品質保証
  • ヒカリの豆知識
    • ヒカリの豆知識
    • ヒカリの用語集
  • お知らせ
    • お知らせ
    • 展示会について
  • 採用案内
  • お問合せ
    • プライバシーポリシー
    • セキュリティーポリシー
  • 夏目光学とは
    • 企業理念
    • 夏目光学とは
    • 会社概要・沿革
      • 社長挨拶
      • 本社
      • テクノロジーセンター
      • 夏目光学の受賞歴
    • 海外向Webサイト
  • 適応分野
    • 半導体製造
    • レーザー加工
      • レーザー用非球面レンズ
    • X線・先端科学
    • 分析・医療
    • 光通信
    • 映像
    • センシング・自動車
    • 航空・宇宙
  • オプティクス
    • 光学素子
    • 光学設計
    • 光学ユニット
    • 品質保証
  • ヒカリの豆知識
    • ヒカリの豆知識
    • ヒカリの用語集
  • お知らせ
    • お知らせ
    • 展示会について
  • 採用案内
  • お問合せ
    • プライバシーポリシー
    • セキュリティーポリシー

宇宙の謎に迫る、X線望遠鏡の性能を飛躍的に向上させる大型ミラーの製造技術を確立

  • 2023-12-14
  • お知らせ, トピックス

宇宙の謎に迫る、X線望遠鏡の性能を飛躍的に向上させる大型ミラーの製造技術を確立

2024年打ち上げの太陽観測ロケット実験FOXSI-4に搭載決定

東京大学、名古屋大学、夏目光学(本社:長野県飯田市、代表取締役社長:細江国彦)の研究グループは、宇宙X線を高性能に観測できる大型ミラーの製造技術を開発しました。この技術は、X線望遠鏡の性能を飛躍的に向上させ、天文学の進展に寄与する画期的なものです。このミラーが搭載される太陽観測ロケット実験FOXSI-4は、太陽フレアによる様々な影響を観測し、宇宙の謎に迫ることができると期待されています。

3_natsume_logotype

2023年12月14日

東京大学

名古屋大学

夏目光学株式会社

発表のポイント

◆X線望遠鏡用のミラーを、従来よりも高精度に、かつ効率的に作製する技術を開発しました。

◆電鋳法において、ミラーに生じる欠陥の有効な防止方法を発見したことで、大きなミラーを作れるようになりました。

◆X線望遠鏡の性能向上と開発コストの低減への効果が期待されます。

高精度筒形ミラーを用いたX線望遠鏡

概要

 東京大学先端科学技術研究センターの三村秀和教授と山口豪太客員研究員、名古屋大学の三石郁之講師、夏目光学株式会社の橋爪寛和取締役常務による研究グループは、1マイクロメートルを上回る高い精度で、X線望遠鏡用の高精度筒形ミラー(図1)を作製する技術を確立しました。

 宇宙には、私たちの目には見えないX線を放つ高エネルギーの天体がたくさんあります。これらを詳しく調べるためにはX線望遠鏡(注1)が必要です。その性能の鍵を握るのは、大型のミラーをどれだけ正確に作製できるかにあります。研究グループは、電鋳法(注2)と呼ばれる転写(レプリカ)手法を用いたX線ミラー作製技術の開発に取り組んできました。しかし、ミラー内部に穴欠陥が生じてしまうため、これまでは小指ほどの小さなミラーしか作ることができませんでした。今回、穴欠陥の有効な防止方法を発見したことで、X線望遠鏡に適用可能な大きなミラーを作れるようになりました。本研究成果は、X線望遠鏡の高性能化とX線天文学の進展に貢献し、望遠鏡開発の低コスト化にも寄与すると期待されます。

図1:太陽をX線で見るための望遠鏡に搭載される筒形ミラー

筒形状で内面が高精度な鏡となっており、X線が反射する(長さ200mm、直径約60 mm)。

発表内容

 X線は非常に高いエネルギーを持つ光であるため、一般的なレンズやミラーで集めることはできません。そこで、宇宙X線観測用の望遠鏡では、ウォルターミラー(注3)と呼ばれる特殊な筒形ミラーが用いられます。ウォルターミラーは、円筒形の内面にナノメートルオーダでの鏡面加工を必要とするため、その作製は困難でした。

ミラーは電鋳法で作製されます。新しい作製技術(図2)では、まず、マンドレルと呼ばれるガラス製の「型」を作製します。次に、電気めっきの原理で、マンドレルの表面を覆うように厚さ0.5~2 mmの「殻」を作ります。この殻をマンドレルから引き抜くと、マンドレルの表面形状が殻の内側にコピーされ、円筒形のウォルターミラーが完成します。マンドレルは繰り返し使用することができるため、たくさんのミラーを効率よく作ることができます。

殻を形成する際、副反応によりその表面に気泡が生じます。この気泡は殻に穴欠陥を生じさせることでミラーの形状を歪めてしまいます。ミラーが大きいほど穴欠陥の防止が難しくなるため、これまでの研究では、小指サイズの小さなミラーしか作ることができませんでした。本研究では、真空を利用した新しい気泡除去手法を用いることで、大きなミラーでも欠陥なく高精度に作ることが可能になりました。

図2:大型筒形ミラーの作製手法の概要

 今回の研究では、太陽観測ロケット実験FOXSI-4(注4)のX線望遠鏡に用いられる直径60 mm、長さ200 mmのウォルターミラーを作製しました。ミラーの精度の指標の一つである二乗平均平方根(root-mean-square,RMS)形状誤差を求めたところ、0.3マイクロメートルという従来にない高い精度で作製されていることがわかりました(図3(a))。望遠鏡に搭載した場合の性能をシミュレーションしたところ、約12秒角(約0.003度)の解像度を期待できることがわかりました(図3(b))。これは、欧米のグループの主導で過去に開発されたX線望遠鏡の性能に比肩するものです。さらに、同一のマンドレルから三つのミラーを作製することに成功し、開発した電鋳プロセスがミラー製造における有力な手法の一つであることが実証されました。

図3:大型筒形ミラーの作成誤差分布と光学性能のシミュレーション結果

 今回の結果は、X線望遠鏡の性能向上、そして天文学の進展につながる大きな成果です。ウォルターミラーの精度向上は、X線望遠鏡の解像度(注5)の向上に直結します。すでに開発したミラーのFOXSI-4への搭載が決定しており、2024年に実観測が行われる予定です。日本発のX線望遠鏡により、太陽フレアの謎が解明されることが期待されます。さらに、高効率な作製手法であるため、X線望遠鏡開発の低コスト化や、新しい観測技術のアイデアの実現に貢献します。次世代のX線望遠鏡ではさらに高い性能が求められるため、この高精度かつ高効率なミラー製造技術は今後のX線天文学の発展にとってますます重要になります。

発表者・研究者等情報

東京大学先端科学技術研究センター超精密製造科学分野
 三村 秀和 教授
 山口 豪太 客員研究員

名古屋大学大学院理学研究科理学専攻
 三石 郁之 講師

夏目光学株式会社テクノロジーセンター
 橋爪 寛和 取締役常務

論文情報

雑誌名:Review of Scientific Instruments

題 名:Efficient and precise fabrication of Wolter type-I X-ray mirrors via nickel electroforming replication using quartz glass mandrels

著者名:Gota Yamaguchi*, Yusuke Matsuzawa, Takehiro Kume, Yoichi Imamura, Hiroaki Miyashita, Akinari Ito, Koki Sakuta, Kazuki Ampuku, Ryuto Fujii, Kentaro Hiraguri, Hirokazu Hashizume, Ikuyuki Mitsuishi, and Hidekazu Mimura

*責任著者

DOI:10.1063/5.0160262

研究助成

本研究は、文部科学省科学研究費補助金基盤A「高精度大型ウォルターミラーの開発とX線望遠鏡・X線顕微鏡への展開」(課題番号:23H00156)、特別研究員奨励費「電気化学反応の精密制御による電鋳プロセスの高精度化(課題番号:18J23036)」の支援により実施されました。

用語解説

(注1)X線望遠鏡

宇宙X線を観測するために特別に設計された望遠鏡です。X線は非常に高いエネルギーを持つ光です。地球の大気はX線を吸収するため、X線望遠鏡は通常、宇宙空間で観測を行います。X線望遠鏡は、宇宙の最も高エネルギーな現象を研究するのに不可欠なツールです。例えば、ブラックホール、中性子星、超新星残骸などがX線を放出しています。X線望遠鏡を使用することで、これらの天体の性質や、高エネルギー物理学の基本原則についての理解を深めることができます。X線望遠鏡の設計は、可視光を扱う通常の望遠鏡とは異なります。高度な技術と精密な構造が要求されるため、その開発と運用は非常に複雑で高価です。日本は、X線天文学の分野で重要な役割を果たしており、これまでも多くのX線天文衛星を打ち上げています。例えば、「すざく」(ASTRO-EII)や最近打ち上げられた「XRISM」などがその例であり、これらにはX線望遠鏡が搭載されています。


(注2)電鋳法

めっき技術を応用した形状転写手法です。目的とする形状の反転形状を持つ型の表面に、金属を厚くめっきし、それを分離し目的とする製品を得ます。一般的な加工では難しい、微細な凹凸や中空構造を高精度に作製できる利点を持ちます。この特長から、金型製造などにおいて不可欠な技術の一つとなっています。


(注3)ウォルターミラー

X線望遠鏡の光学系として1952年にHans Wolterにより提案されたミラーです。全反射現象を利用してX線を結像します。円筒形の内面にナノメートルオーダの鏡面加工を必要とするため、作製が非常に困難です。 


(注4)太陽観測ロケット実験FOXSI-4

日米共同の観測ロケット実験で、NASAの観測ロケットを用い、太陽フレアから放たれるX線を詳細に観測します(FOXSI:Focusing Optics X-ray Solar Imager)。これまでに3回の観測が行われ、4回目となるFOXSI-4の打ち上げが2024年に予定されています。過去の観測ではNASAのグループが作製したX線ウォルターミラーが使われていましたが、次回のFOXSI-4では、本研究の手法で作製されたウォルターミラーが、全7台のうち2台の望遠鏡に使われる予定です。


(注5)望遠鏡の解像度

 天体の小さな構造をどこまで観測できるかという性能を、解像度(分解能)と呼びます。天体の見かけの大きさは角度を用いて表される(例えば太陽のみかけの直径は約0.5度)ため、望遠鏡の解像度も同じく角度で表記されます。一般に天体の見かけの大きさは1度より小さいため、それより細かい単位である分や秒もしばしば使われます。今回、シミュレーションで見積もられた12秒角という解像度は、約0.003度の大きさに相当します。

問合せ先

(研究内容については発表者にお問合せください)

〈研究に関する問合せ〉

東京大学先端科学技術研究センター超精密製造科学分野
教授 三村 秀和(みむら ひでかず)
Tel:03-5452-5189 E-mail:mimura@upm.rcast.u-tokyo.ac.jp

東海国立大学機構名古屋大学大学院理学研究科理学専攻 
講師 三石 郁之(みついし いくゆき)
Tel:052-788-6194 E-mail:mitsuisi@u.phys.nagoya-u.ac.jp

夏目光学株式会社テクノロジーセンター
取締役常務 橋爪 寛和
Tel:0265-27-5171 E-mail:hirokazu.hashizume@natsume-optics.co.jp

〈報道に関する問合せ〉

東京大学先端科学技術研究センター広報・情報室
Tel:03-5452-5424 E-mail:press@rcast.u-tokyo.ac.jp

東海国立大学機構 名古屋大学広報課
Tel:052-558-9735 E-mail:nu_research@t.mail.nagoya-u.ac.jp

夏目光学株式会社
管理本部長 本田 英則
 Tel:0265-22-2435 E-mail:hidenori.honda@natsume-optics.co.jp

お客様ご相談専用ダイヤル

0265-22-2434

平日9:00〜17:00(営業部直通)

お問合せ 

その他のお知らせ、展示会について

Credit:MPS (D. Germerott)

当社の光学部品が搭載された国立天文台 SUNRISE-III 気球実験が成功しました!

OPIE’25 レーザーEXPOに出展します!

2024~2025 年末年始休業のお知らせ

Prev前へ2023~2024 年末年始休業のお知らせ
次へ令和6年能登半島地震の影響に関するお知らせNext

お客様ご相談専用ダイヤル

0265-22-2434

平日9:00〜17:00(営業部直通)

お問合せ 

夏目光学とは

  • 夏目光学とは
  • 夏目光学の受賞歴
  • 夏目光学の強み
  • 企業理念
  • 社長挨拶
  • 本社
  • テクノロジーセンター
  • 会社概要・沿革
  • 海外向Webサイト

適応分野

  • 半導体製造
  • レーザー加工
  • X線・先端科学
  • 分析・医療
  • 光通信
  • 映像
  • センシング・自動車
  • 航空・宇宙

オプティクス

  • 光学素子
  • 光学設計
  • 光学ユニット
  • 品質保証

ヒカリの豆知識

お知らせ

  • お知らせ
  • 展示会について
  • お問合せ
  • 採用案内
夏目光学とは
  • 夏目光学とは
  • 夏目光学の受賞歴
  • 夏目光学の強み
  • ビジョン・理念
  • 社長挨拶
  • 本社
  • テクノロジーセンター
  • 会社概要・沿革
  • 海外向Webサイト
適用分野
  • 半導体製造
  • レーザー加工
  • X線・先端科学
  • 分析・医療
  • 光通信
  • 映像
  • センシング・自動車
  • 航空・宇宙
オプティクス
  • オプティクス
  • 光学素子
  • 光学設計
  • 光学ユニット
  • 品質保証
  • 光の豆知識
お知らせ
  • 光学素子
  • 光学設計
  • 品質保証
  • お問合せ
  • 採用案内

本社

〒395-0808 長野県飯田市鼎上茶屋3461

管理本部

TEL.0265-22-2435(代表)
FAX.0265-22-2477

営業部

TEL.0265-22-2434
FAX.0265-22-2467

テクノロジーセンター

〒399-2431長野県飯田市川路1200-29
TEL.0265-27-5171 FAX:0265-27-6171

東京オフィス

〒160-0023 東京都新宿区西新宿1-22-2 新宿サンエービル8階
TEL.03-6302-0370 FAX.03-6302-0371

copyright © 2022, 夏目光学株式会社

個人情報の取扱について  サイトマップ
個人情報の取扱について  サイトマップ